

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2016
Lab 10 – Tuples and Dictionaries

Assignment: Lab 10 – Tuples and Dictionaries
Due Date: During discussion, April 18th through April 21st
Value: 10 points

Part 1: Data Types

So far this semester, we have been learning about the different data types that
we can use. We have discussed numbers (both integers and floats),
Booleans, strings, and lists. Interestingly, strings and lists share a lot of
characteristics and functionalities, such as indexing and slicing operations. We
have a name for these types of structures: they are called sequence types. In
this lab we are going to practicing using two more data types that are also
sequence structures: tuples and dictionaries.

Part 2: Tuple Creation

Tuples look a lot like lists. They contain information in a “list” form and they act
pretty similarly. The two main differences between tuples and lists are:

1. The tuples cannot be changed (they are immutable), unlike lists
2. Tuples use parentheses, whereas lists use square brackets

So when should you use a tuple and when should you use a list? Generally,
we use a tuple when the number of items in the structure is known in advance,
and won’t ever need to be changed. Tuples are faster than lists, so if we won’t
be changing the values in the structure, we should use a tuple.

Creating a tuple is as simple as assigning comma-separated values to a
variable between parentheses. Technically, the parentheses are optional –
however, for clarity, we will always include them.

CMSC 201 – Computer Science I for Majors Page 2

Here are some examples of tuple creation:
tup1 = ('physics', 'chemistry', 1997, 2000)

tup2 = (1, 2, 3, 4, 5)

tup3 = ("a", "b", "c", "d")

Part 3: Updating and Deleting Tuples

As we have discussed, tuples are immutable, which means they cannot be
changed (i.e., updated in place). For this reason, we cannot directly add or
remove individual items of a tuple after it has been created. However, we can
use pieces of existing tuples to create new ones. For example:

tup1 = ("CMSC", "201")

tup2 = ("Rules", "Hooray")

tup3 = tup1 + tup2

The tup3 variable now contains the following information:

('CMSC', '201', 'Rules', 'Hooray')

Although we cannot change a tuple, it is possible to completely delete one. To
do this, we use the function del, which is just short for “delete.” To remove the

variable tup3, we would use the following command:
del(tup3)

After using the del function, the variable is completely gone! If we try to

reference it, Python will tell us that there is a “NameError” and that the variable
named “tup3” is not defined.

As tuples are similar to strings, almost all the functions we use on strings are
usable on tuples including:

 len() length

 + concatenation

 * repetition

 3 in (1, 2, 3) membership

 for x in tupleName: iteration

CMSC 201 – Computer Science I for Majors Page 3

Part 4: Dictionaries

Another useful data type built into Python is the dictionary. Dictionaries are
sometimes found in other languages as “associative memories” or “associative
arrays.” Dictionaries basically map a key to a value. So, in the example below,
we have a dictionary that maps the key ‘a’ to the value ‘alpha’; the key ‘o’ to

the value ‘omega’; and the key ‘g’ to the value ‘gamma’.

We can create this dictionary with this line of code:

greek = {'a': 'alpha', 'o': 'omega', 'g': 'gamma'}

Dictionaries may look a lot like lists, but there are a few key differences:

1. A dictionary uses curly braces instead of square brackets
2. A dictionary is made up of (key, value) pairs
3. The key and value are separated by a colon (:)

4. The (key, value) pairs are separated by a comma (,)

5. The keys must be unique (just like the indexes of a list are unique)

Lists are indexed by order, which we see as a range of numbers. Dictionaries
are indexed by association, or their key values. Keys can be any immutable
type, and every key in a dictionary must be unique. Strings, floats, and
integers are common choices for a key; tuples can also be used as a key.

CMSC 201 – Computer Science I for Majors Page 4

Part 5: Dictionary Functions

We can start by looking at how we could create a simple dictionary. Let’s
create a new dictionary called example.

example = {'fname' : 'Santa', 'lname' : 'Claus',

'occupation' : 'Salesman'}

In this dictionary, we have mapped fname to Santa, lname to Claus, and

occupation to Salesman. Using this dictionary, we can perform a number of

operations.

A. Returning something from the dictionary:
print(example['fname'], example['lname'])

B. Adding something to the dictionary:

example['salary'] = 1250595

C. Updating something in the dictionary:

example['occupation'] = 'Pilot'

D. Deleting something from the dictionary:

We can remove a single entry by referencing the key itself:
del example['occupation']

We can remove all entries in the dictionary by using clear
example.clear()

We can delete the entire dictionary by using del
del example

E. Checking if a key is present in the dictionary:

'occupation' in example

(This will return a Boolean (True or False) that indicates whether the key
is in the dictionary.)

CMSC 201 – Computer Science I for Majors Page 5

F. Dictionaries also have methods that enable some additional functionality.

In addition to the commands and examples above, here are some of the
more helpful methods we can use:

a. dict.items()
i. Returns a list of dict's (key, value) tuple pairs

b. dict.values()
i. Returns a list of dictionary dict's values

c. dict.keys()
i. Returns a list of dictionary dict's keys

CMSC 201 – Computer Science I for Majors Page 6

Part 6: State Abbreviator

After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab10, and go inside the newly created lab10

directory.

linux2[1]% cd 201

linux2[2]% cd Labs

linux2[3]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[4]% mkdir lab10

linux2[5]% cd lab10

linux2[6]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab10

linux2[7]% █

To open the file for editing, type
 emacs lab10.py

and hit enter.

The first thing you should do in your new file is create and fill out the comment
header block at the top of your file. Here is a template:

File: lab10.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 7

For Lab 10, you will be implementing an application that abbreviates a state
name. First things first, download the file containing the states and their
abbreviations by running this command inside your lab10 folder:

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/states.txt .

The file contains the states and their respective abbreviations.

In order to complete your lab, you will need to implement a program that does
the following tasks:

1. Read in the states.txt file (you can hardcode the filename). (HINT:

You will need to take a look at how the file is formatted to be able to
extract the parts you need!)

2. Write a function to store the data from the file in a dictionary, where the
state names are the key, and the abbreviation is the value. (HINT: Your
function should return the dictionary. The split() function should

prove useful in getting the data out of the file.)

3. Ask the user to input a state – check if the word appears in the

dictionary’s keys. (HINT: Use the in keyword discussed earlier.)

a. If the word doesn’t appear in the dictionary, tell the user that.
b. If the word does appear in the dictionary, return the translation.

4. Allow the user to keep looking up words as long as they like; if they type
“exit”, the program should finish.

5. If the user types “list” it lists each of the state names (HINT: Use the
keys() method to list the keys)

You can find a sample run of the program on the next page.

CMSC 201 – Computer Science I for Majors Page 8

Here is a sample run of the program, with the user input in blue:

-bash-4.1$ python lab10.py

Welcome to the State Abbreviator

Please enter the state to abbreviate (list to get list and

exit to exit): Pennsylvania

The abbreviation of the state: Pennsylvania is PA

Please enter the state to abbreviate (list to get list and

exit to exit): Maryland

The abbreviation of the state: Maryland is MD

Please enter the state to abbreviate (list to get list and

exit to exit): maryland

Sorry. That is not a state.

Please enter the state to abbreviate (list to get list and

exit to exit): exit

Thank you for using the state abbreviator!

HINT: If you are having a tough time figuring out where to start, check out this
code framework. This is only one way of writing the code for this lab.

convertToDict takes in the file and converts to a dict

Input: a file object

Output: a dictionary containing the file contents

def convertToDict(fileContents):

 # function definition goes here

def main():

 states = open("states.txt")

 # A function call to convertToDict goes here

 print("Welcome to the State Abbreviator")

 word = ""

 # This should be a while loop for input

 # The while loop needs to check for exit and list,

 # otherwise it prints the state and it’s abbreviation

 # The rest of your code goes inside the loop

 print("Thank you for using the state abbreviator!")

main()

CMSC 201 – Computer Science I for Majors Page 9

Part 7: Completing Your Lab

To test your program, first enable Python 3, then run lab10.py. Try asking it

to abbreviate different states than the one shown in the sample run shown
above.

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

References:
Python Software Foundation. (2015). “Dictionaries”. Retrieved from
https://docs.python.org/2/tutorial/datastructures.html

Tutorials Point (2015). “Python Dictionary”. Retrieved from
http://www.tutorialspoint.com/python/python_dictionary.htm

Tutorials Point (2015). “Python Tuples”. Retrieved from
http://www.tutorialspoint.com/python/python_tuples.htm

https://docs.python.org/2/tutorial/datastructures.html
http://www.tutorialspoint.com/python/python_dictionary.htm
http://www.tutorialspoint.com/python/python_tuples.htm

